Teacher Lesson Plan

Lesson: 6.2.5 - Supplement

Solving and Graphing Two-Step Inequalities

CC Standards

7.EE.4b Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

b) Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least \$100. Write an inequality for the number of sales you need to make, and describe the solutions.

Objective

The students will solve two-step inequalities and graph their solutions.

Mathematical Practices

#1 Make sense of problems and persevere in solving them.

#5 Use appropriate tools strategically.

#6 Attend to precision.

#7 Look for and make use of structure.

Teacher Input

Bellwork: Review bellwork.

Homework: Review important problems assigned the previous night.

Introduction: Introduce as directed on the PowerPoint.

Lesson: Teach as directed by PowerPoint. Look at each slide for additional comments and answers.

Make sure students follow along in their notes.

Classwork

Page 6

Homework

Page 7

Extra Practice

Print from any of the 54 inequality worksheets located at:

http://www.mathworksheets4kids.com/two-step-inequalities.html

Closure

See last slide of PowerPoint for closure. Student will have to summarize the difference between equations and inequalities. They will have to make up 3 problems where you flip the inequality symbol and 3 problems where you do not flip the symbol.

Equations vs. Inequalities

- The good news is that you solve an inequality just like you do an equation.
- There are a few special things to consider with inequalities:
 - 1) We need to look *carefully* at the inequality problem because there are times when you will have to **FLIP** the inequality symbol.
 - 2) We also need to graph the solution set.
- An inequality symbol needs to be **reversed** (flipped) when you *multiply or divide* both sides of the inequality by a negative number.

-2x + 5 > 15 Example 2: $\frac{x}{-8} + 5 \le 13$

Look for the variable! If it is "teamed-up" with a negative number, Flip it!

You Try #1

Analyze each inequality. If it is an inequality where you will need to *flip* the symbol, then **circle** that inequality symbol and write above it what it will look like after the inequality has been solved. *Do not work the problems*.

(1)
$$6a - 5 \le -23$$

(2)
$$-x + 4 < 14$$

(3)
$$-\frac{r}{2} + 8 > 16$$

(4)
$$12 - 11a \ge 45$$

(5)
$$3x + 9 > -36$$

(6)
$$-22 < 6c + 4$$

(7)
$$-6t + (-4) \ge 14$$

(8)
$$\frac{x}{-6} + 2 \le 8$$

(9)
$$5x - 3x + 2 > 12$$

(10)
$$5x - 8x + 4 < 16$$

Solving an Inequality where you have to reverse (flip) the symbol.

Solve: -3y + 5 > 23

$$-5 > 23$$

 -5 • Subtract 5 from each side.

$$-3y > 18$$

Graph the solution.

Open circle, line to the left.

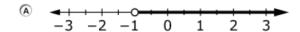
Guided Practice #1 You Try #1 $3x + 4 \ge 16$ 5 + 4x < 33**Guided Practice #2** You Try #2 7 - 2x > 11 $6-3x \leq 9$ **Guided Practice #3** You Try #3 $\frac{x}{4} + 3 \geq -7$ $\frac{x}{2} - 5 < -8$

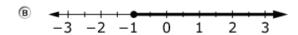
Guided Practice #4 You Try #4 $1-\frac{x}{2}>-4$ $8-\frac{x}{3}\leq 7$ **Guided Practice #5** You Try #5 $-k+6 \geq 42$ $-m+3 \leq -3$ **Guided Practice #6** You Try #6 -11 < -6x + 1-2 > 2x - 10

STATE TEST PREP

Try These...

- (1) What is the solution to the inequality 3x 42 > 3?
 - A $X > ^{-}13$
 - B $x < ^{-}13$
 - C x > -15
 - D x < -15
- (2) Which choice is a graph of the solution set for 12 x < 8?

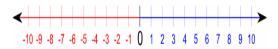




(3) Which number line shows the solution to the inequality -3x - 5 < -2?

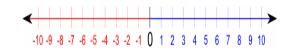
- Which set of numbers is included in the solution set of 4 3x < -2?
 - A {2.5, 8, 15}
 - B {-8, 0, 1.5}
 - C {-15, -8, 0}
 - D {0, 2.5, 8}

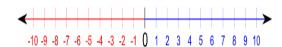

Date


Period: ____

Solve and Graph each inequality.

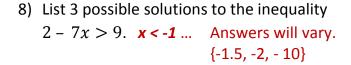
1)
$$3x + 12 \le -9$$


2)
$$\frac{x}{5} - 3 > -4$$

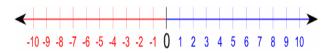


3) $0 \ge 5k + 15$

4)
$$9 - 2y < 7$$



Solve each inequality.

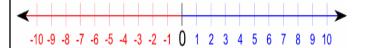

$$5) \qquad -\frac{x}{4} + 2 > 11$$

6)
$$6t + 7 \ge -23$$

7)
$$-k + 75 \le 100$$
 $k \ge 25$

9) Graph the following inequality: $-8 \le x$

John solved the inequality $3x - 5 \ge 28$ and determined that x could equal to 12. Is John correct? Explain why or why not.

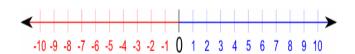

Date_____ Period_____

1) Solve and Graph.

$$2x + 4 \geq 14$$

2) Solve and Graph.

$$\frac{x}{-3} - 3 \le -2$$


-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

3) Solve and Graph.

$$-15 < 2x - 7$$

4) **Solve** for *x*.

$$-24 + 7x < 11$$

5) **Solve** for *h*.

$$6h - 10h + 2 \ge -10$$

6) **Solve** for *x*.

$$-x + 5 > 23$$

Answer Keys |

Equations vs. Inequalities

- The good news is that you solve an inequality just like you do an equation.
- There are a few special things to consider with inequalities:
 - 3) We need to look *carefully* at the inequality problem because there are times when you will have to **FLIP** the inequality symbol.
 - 2) We also need to graph the solution set.
- An inequality symbol needs to be reversed (flipped) when you multiply or divide both sides of the inequality by a negative number.

-2x + 5 > 15 Example 2: $\frac{x}{-8} + 5 \le 13$

Look for the variable! If it is "teamed-up" with a negative number, Flip it!

Analyze each inequality. If it is an inequality where you will need to *flip* the symbol, then circle that inequality symbol and write above it what it will look like after the inequality has been solved. Do not work the problems.

(1)
$$6a - 5 \le -23$$

(2)
$$-x + 4 < 14$$

(3)
$$-\frac{r}{2} + 8 \bigcirc 16$$

(5)
$$3x + 9 > -36$$

(6)
$$-22 < 6c + 4$$

$$(7) \qquad -6t + (-4) \ge 14$$

(8)
$$\frac{x}{-6} + 2 \le 8$$

(9)
$$5x - 3x + 2 > 12$$

(10)
$$5x - 8x + 4 < 16$$

Solving an Inequality where you have to reverse (flip) the symbol.

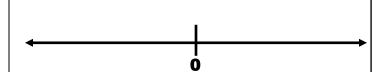
Solve:
$$-3y + 5 > 23$$

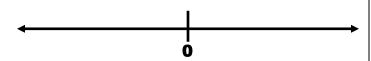
 -5 • Subtract 5 from each side.

Graph the solution.

Open circle, line to the left.

Guided Practice #1

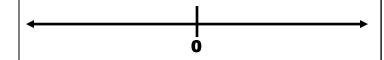

$$3x + 4 \ge 16 \qquad x \ge 4$$

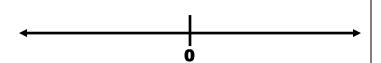


You Try #1

$$5 + 4x < 33$$
 $x < 7$

Guided Practice #2


$$7 - 2x > 11$$
 $x < -2$

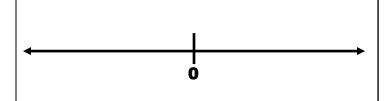


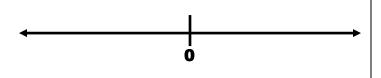
You Try #2

$$6-3x\leq 9 \qquad x\geq -1$$

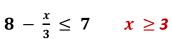
Guided Practice #3

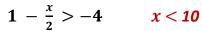
$$\frac{x}{2} - 5 < -8 \quad x < -6$$

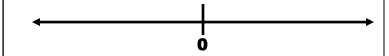



You Try #3

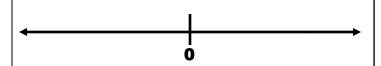
$$\frac{x}{4} + 3 \ge -7 \qquad x \ge -40$$

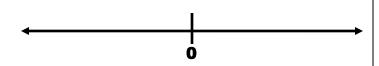





Guided Practice #4

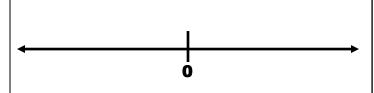
You Try #4

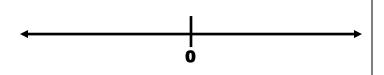

Guided Practice #5


$$-k+6 \geq 42$$
 $k \leq -36$

You Try #5

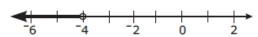
$$-m+3\leq -3 \qquad m\geq 6$$


Guided Practice #6


$$-2 > 2x - 10$$
 $x < 4$

You Try #6

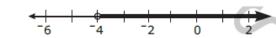
$$-11 < -6x + 1 \qquad x < 2$$

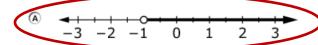


Lesson 6.2.5 – Two-Step Inequalities

STATE TEST PREP Try These...

- (1) What is the solution to the inequality 3x 42 > 3?
 - Α x > -13
 - $x < ^{-}13$
 - C x > -15
 - $x < ^{-}15$ D
- (2) Which choice is a graph of the solution set for 12 - x < 8?



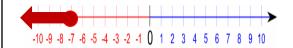


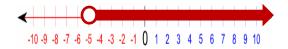
D

Which number line shows the solution to the inequality -3x - 5 < -2? (3)

- (4) Which set of numbers is included in the solution set of 4 - 3x < -2?
 - {2.5, 8, 15}
 - {-8, 0, 1.5} В
 - {-15, -8, 0} С
 - $\{0, 2.5, 8\}$ D

Date

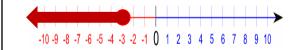

Period:

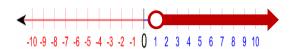

Solve and Graph each inequality.

1)
$$3x + 12 \le -9$$
 $x \le -7$

$$x \leq -7$$

2)
$$\frac{x}{5} - 3 > -4$$
 $x > -5$





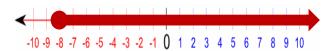
3)
$$0 \ge 5k + 15$$
 $k \le -3$

$$k \leq -3$$

4)
$$9 - 2y < 7$$
 $y > 1$

Solve each inequality.

5)
$$-\frac{x}{4} + 2 > 11$$
 $x < -36$


$$x < -36$$

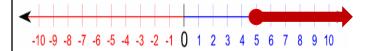
6)
$$6t + 7 \ge -23$$
 $t \ge -5$

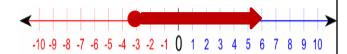
$$t \geq -5$$

7) $-k + 75 \le 100$ $k \ge 25$

- 8) List 3 possible solutions to the inequality 2 - 7x > 9. x < -1 ... Answers will vary. $\{-1.5, -2, -10\}$
- Graph the following inequality: $-8 \le x$ 9)

10) John solved the inequality $3x - 5 \ge 28$ and determined that x could equal to 12. Is John correct? Explain why or why not. <u>John is correct. The solution is $x \ge 11$. Twelve</u> meets the criteria because it is greater than 11.

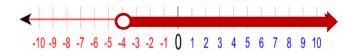

Date_____ Period_____


1) Solve and Graph.

$$2x + 4 \ge 14$$
 $x \ge 5$

2) Solve and Graph.

$$\frac{x}{-3} - 3 \le -2$$
 $x \ge -3$



3) Solve and Graph.

$$-15 < 2x - 7$$
 x > -4

4) Solve for x.

$$-24 + 7x < 11$$
 x < 5

5) **Solve** for *h*.

$$6h - 10h + 2 \ge -10$$
 x \le **3**

6) **Solve** for x.

$$-x + 5 > 23$$
 x < -18